Contd...

1023

M.Sc. IV Semester Examination 2020

Subject : Mathematics

 $Paper: II-Advanced\ Graph\ Theory$

Max.M	ax.Marks: 85			
Note:	Attempt all questions.			
1.	Attempt any five parts:		5x5=25	
	(i)	Explain graph isomorphism.		
	(ii)	Define Eulerian path.		
	(iii)	Explain rooted and binary trees.		
	(iv)	Explain fundamental cut set of a graph.		
	(v)	Define abstract and planar graph.		
	(vi)	Explain geometric and combinational duals.		
	(vii)	Write a short note on chromatic partitioning of a graph.		
	(viii)	Explain Dimmer problem.		
	(ix)	Explain Eulerian digraph.		
	(x)	Define adjacency matrix of a digraph.		
		Unit - I		
2.(a)	Expla	in Konigsberg bridge problem.	06	
(b)	Expla	in travelling salesman problem.	06	
		OR		
		that a connected graph is an Euler graph if and only if it can be apposed into circuits.	:	
		Unit - II		
3.	Write short notes on the following:			
	(a)	Distance and center in a tree	06	
	(b)	Graph as a metric space	06	

OR

(a)	Show that every circuit has an even number of edges in common with	L
	any cut set.	06

(b) Show that the number of vertices in a binary tree is odd.

06

Unit - III

4. Define edge and vertex connectivities of a graph G, and prove that the vertex connectivity of any graph G can never exceed the edge connectivity of G. 12

OR

Define regions in a graph and prove that a connected planner graph with n vertices and l edges has l-n+2 regions.

Unit - IV

5. Prove that every tree with two or more vertices is 2-chromatic.

12

OR

Prove that the vertices of every planar graph can be properly colored with five colors.

Unit - V

6. Explain different types of digraphs.

12

OR

Write short notes on the following:

- (i) Kruskal algorithm
- (ii) Prism algorithm
